Time-Varying ARMA modelling of Nonstationary EEG using Kalman Smoother Algorithm

نویسندگان

  • Mika P. Tarvainen
  • Perttu O. Ranta-aho
  • Pasi A. Karjalainen
چکیده

An adaptive autoregressive moving average (ARMA) modelling of nonstationary EEG by means of Kalman smoother is presented. The main advantage of the Kalman smoother approach compared to other adaptive algorithms such as LMS or RLS is that the tracking lag can be avoided. This advantage is clearly presented with simulations. Kalman smoother is also applied to tracking of alpha band characteristics of real EEG during an eyes open/closed test. The observed tracking ability of Kalman smoother, compared to other methods considered, seemed to be better.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracking of nonstationary EEG with Kalman smoother approach

An adaptive autoregressive moving average (ARMA) modelling of nonstationary EEG by means of Kalman smoother is presented. The main advantage of the Kalman smoother approach compared to other adaptive algorithms such as LMS or RLS is that the tracking lag can be avoided. This advantage is clearly presented with simulations. Kalman smoother is also applied to tracking of alpha band characteristic...

متن کامل

Tracking of Nonstationary Eeg with the Roots of Arma Models

The tracking of nonstationary EEG with time-varying ARMA models is discussed. A method for detecting spindles in rat EEG is presented. The method is based on tracking of a single system pole of the ARMA model.

متن کامل

Nonstationary ARMA modeling of seismic motions

Discrete time-varying autoregressive moving average (ARMA) models are used to describe realistic earthquake ground motion time histories. Both amplitude and frequency nonstationarities are incorporated in the model. An iterative Kalman filtering scheme is introduced to identify the time-varying parameters of an ARMA model from an actual earthquake record. Several model verification tests are pe...

متن کامل

Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multiwavelets

A new time-varying autoregressive (TVAR) modelling approach is proposed for nonstationary signal processing and analysis, with application to EEG data modelling and power spectral estimation. In the new parametric modelling framework, the time-dependent coefficients of the TVAR model are represented using a novel multi-wavelet decomposition scheme. The timevarying modelling problem is then redu...

متن کامل

Design and Implementation of a Kalman Filter-Based Time-Varying Harmonics Analyzer

Nowadays with increasing use of numerous nonlinear loads, voltage and current harmonics in power systems are one of the most important problems power engineers encounter. Many of these nonlinear loads, because of their dynamic natures, inject time-varying harmonics into power system. Common techniques applied for harmonics measurement and assessment such as FFT have significant errors in presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001